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Abstract—Kronecker product (KP) approximation has recently
been applied as a modeling and analysis tool on systems with hier-
archical networked structure. In this paper, we propose a tensor
product-based approach to the KP approximation problem with
arbitrary number of factor matrices. The formulation involves a
novel matrix-to-tensor transformation to convert the KP approx-
imation problem to a best rank-(R1, . . . , RN ) tensor product
approximation problem. In addition, we develop an algorithm
based on higher-order orthogonal iteration to solve the tensor
approximation problem. We prove that the proposed approach
is equivalent to conventional singular value decomposition-based
approach for two matrix factor case proposed by Van Loan.
Hence, our work is a generalization of Van Loan’s approach to
more than two factor matrices. We demonstrate our approach
by several experiments and case studies. The results indicate that
the tensor product formulation is effective for KP approximation.

I. INTRODUCTION

Kronecker product (KP) is an important matrix operation
which allows a large block matrix to be represented by
two or more smaller factor matrices. KP has been studied
for decades and has a wide range of applications including
signal processing, image processing, and numerical computa-
tion [1]. Recently, due to its “fractal” features, such as the
self-similarity property, Kronecker product has been applied
to model the hierarchically organized networks of complex
systems in biology and social networks [2]. It has also been
utilized in dynamics and control of large composite networked
system analysis [3]. Hence, the KP approach requires ef-
ficient Kronecker product decomposition and approximation
techniques to obtain the factor systems.

There are a few studies on the Kronecker approximation of
matrices. Most notably, Van Loan and Pitsianis [4] proposed
a singular value decomposition (SVD)-based algorithm to
efficiently find the optimal factor matrices A1 and A2 that
minimize the Frobenius norm ‖M−A1 ⊗A2‖F . However,
this work did not consider the approximation using more than
two factor matrices.

In this paper, we propose a novel tensor product approach
which extends the KP approximation to an arbitrary number of
factor matrices, by applying a matrix-to-tensor transformation

and the higher-order orthogonal iteration (HOOI) algorithm
of tensor [5]. Specifically, we consider the Kronecker product
approximation problem as follows: Let M be a p × q matrix
with p = p1p2 · · · pN and q = q1q2 · · · qN . Then the problem
considered is finding the matrices An ∈ Rpn×qn for n =
1, . . . , N that solve the following minimization problem:

min
A1,···,AN

‖M−A1 ⊗A2 ⊗ · · · ⊗AN‖F , (1)

where ⊗ and ‖·‖F denote the Kronecker product and the
Frobenius norm, respectively. The Kronecker product of ma-
trices A ∈ Rp1×q1 and B ∈ Rp2×q2 is defined as the p1p2-
by-q1q2 matrix,

A⊗B =


a11B a12B · · · a1,q1B
a21B a22B · · · a2,q1B

...
...

. . .
...

ap1,1B ap1,2B · · · ap1,,q1B

 . (2)

Moreover, the Frobenius norm is defined as:

‖A‖F =

√√√√ p1∑
i=1

q1∑
j=1

a2ij . (3)

The major difference between this work and Van Loan’s
presented in [4] is that we allow two or more factor matrices
in (1).

We first transform the given matrix M to a (N+1)th-order
tensor M ∈ RpN×qN× p1q1×...×pN−1qN−1 using the proposed
matrix-to-tensor algorithm. Then we convert problem (1) into
a best rank-(R1, . . . , RN+1) tensor product approximation
problem. We propose to use the HOOI algorithm to solve
for the tensor product. Then, by simple reshaping operations,
we obtain the solution for (1). We prove that the proposed
approach is equivalent to Van Loan’s in the two factor matrices
case.

The structure of this paper is as follows: Section II provides
a brief review on existing tools for the KP approximation
problems, including the Van Loan’s approach for two factor
matrix case and useful tensor product operations. Section
III introduces the formulation of the Kronecker product ap-
proximation problem by describing the details of our tensor
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production transformation. Section IV shows our numerical
results. Finally, section V concludes the paper by discussing
possible directions for future work.

II. RELATED WORKS

In this section, we briefly introduce the existing tools related
to the KP approximation problem. First, we present the KP
approximation method for two factor matrices proposed by
Van Loan et al. [4]. Second, we introduce useful tensor product
operations including the n-mode product and higher-order
singular value decomposition (HOSVD) [5]–[10]. Third, we
review the alternating least squares (ALS)-based algorithm
known as higher-order orthogonal iteration (HOOI) proposed
by De Lathauwer et al. [5].

A. Van Loan’s method for Kronecker product approximation

For the two factor matrix case, the minimization problem
(1) becomes

min
A1,A2

‖M−A1 ⊗A2‖F . (4)

Consider the matrix M as a p1p2-by-q1q2 uniform blocking
matrix:

M =


M11 M12 · · · M1,q1

M21 M22 · · · M2,q1
...

...
. . .

...
Mp1,1 Mp1,2 · · · Mp1,q1

 (5)

where Mij ∈ Rp2×q2 . In [4], Van Loan et al. prove that

‖M−A1 ⊗A2‖F =
∥∥R(M)− vec(A1)vec(A2)

T
∥∥
F

(6)

where vec(A) is the vectorized matrix A by stacking its
columns, and R(M) is a rearrangement of M defined by

R(M) =

M1

...
Mq1

 , Mj =

 vec(M1,j)
T

...
vec(Mp1,j)

T

 , (7)

for j = 1, . . . , q1. Based on (6), the KP approximation (1) for
two factor matrices becomes a rank-1 matrix approximation
problem, and thus can be solved by matrix SVD [4].

B. Tensor product operations

Here we introduce tensor operations that are useful for our
problem formulation. First, let M ∈ RI1×···×IN be an N th-
order tensor. We state the definition of n-mode unfolding of
tensor M as discussed in [9].

Definition 1. (n-mode unfolding of tensor) The n-mode
unfolding of tensor M ∈ RI1×···×IN is a matrix denoted
by M(n) ∈ RIn×(In+1×···×IN×I1×···×In−1) that has tensor
element M(i1, i2, . . . , iN ) at index (in, j), i.e.,

M(n)(in, j) =M(i1, i2, . . . , iN ) (8)

where j = 1+
∑N
k=1,k 6=n(ik−1)Jk and Jk =

∏k−1
m=1,m6=n Im.

By applying the n-mode unfolding of tensor, we define the
n-mode product of tensor which is the multiplication of a
tensor by a matrix in mode n.

Definition 2. (n-mode product) The n-mode product of tensor
M ∈ RI1×···×IN with a matrix U ∈ RJ×In , denoted by M×n
U, is a tensor of size I1 × · · · × In−1 × J × In+1 × · · · × IN
with element at index (i1, . . . , in−1, j, in+1, . . . , iN )

(M ×n U)(i1, . . . , in−1, j, in+1, . . . , iN )

=

In∑
in=1

M(i1, . . . , iN )U(j, in).
(9)

In terms of unfolded tensors, we have

Y =M ×n U⇔ Y(n) = UM(n). (10)

Note that a matrix M = USVT for matrices U, S and V,
it can also be expressed as M = S×1U×2V. Moreover, we
have

(M ×n U)×m V = (M ×m V)×n U (11)

where m 6= n.
The concept of higher-order singular value decomposition

was introduced in the earlier works [7], [8] and later in more
rigorous formulation [5], [9]. Here we state the theorem of
HOSVD:

Theorem 1. (HOSVD) Any real tensor M ∈ RI1×IN can be
written in the Tucker form as:

M = S ×1 U1 ×2 U2 ×3 · · · ×N UN (12)

where
1) Un ∈ RIn,In for n = 1, . . . , N is an orthonormal

matrix known as the n-mode singular matrix,
2) S ∈ RI1×···×IN is known as the core tensor of which

the subtensor Sin=α, obtained by fixing the nth index
to α, have the following properties:

a) all-orthogonality:

〈Sin=α, Sin=β〉 = 0 (13)

whenever α 6= β and for all n.
b) ordering:

‖Sin=1‖F ≥ ‖Sin=2‖F ≥ · · · ≥ ‖Sin=In‖F ≥ 0
(14)

for all possible n.

The operation of HOSVD is based on matrix SVD. The n-
mode singular matrix Un is just the left singular matrix of the
n-mode unfolded matrix of tensor M , i.e.

M(n) = UnSnV
T
n (15)

for n = 1, . . . , N . The core tensor S can then be computed
by the following formula:

S =M ×1 U
T
1 ×2 U

T
2 ×3 · · · ×N UT

N . (16)

Similar to the property of matrix SVD where the zero
or small singular values and the associating singular vectors
can be discarded for reduced order modeling, it is possible
to obtain a lower-rank tensor using HOSVD. However, this
approach does not necessarily lead to the best approximation
(in terms of the Frobenius norm) of the given tensor M for
the same rank condition [5], [11].
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Algorithm 1: HOOI Algorithm
input : Original tensor M of size I1 × · · · × IN and

desired rank of output R1, . . . , RN
output: Tensor S and the matrices Un for

n = 1, . . . , N

Initialize Un ∈ RIn×Rn for n = 1, . . . , N using
HOSVD
while not converged do

for n = 1, . . . , N do
V =M ×1 U

T
1 ×2 · · · ×n−1 UT

n−1 ×n+1

UT
n+1 ×n+2 · · · ×N UT

N ;
W = argmaxW

∥∥V ×n WT
∥∥
F

subject to
WTW = I;
Un ←W;

S ←M ×1 U
T
1 ×2 U

T
2 ×3 · · · ×N UT

N ;

C. Higher-order orthogonal iteration

De Lathauwer et al. [5] proposed HOOI for the best rank-
(R1, R2, . . . , RN ) approximation for tensor, as a complement
for HOSVD. The best rank-(R1, R2, . . . , RN ) approximation
is formulated as the following minimization problem:

min
S,U1,···,UN

‖M− S ×1 U1 ×2 U2 ×3 · · · ×N UN‖F (17)

where the Frobenius norm of tensor M is defined as

‖M‖F =

 ∑
i1,i2,...,in

M2
i1,i2,...,in

1/2

(18)

The procedure of HOOI is shown under Algorithm 1.

III. FORMULATION OF KRONECKER PRODUCT
APPROXIMATION PROBLEM WITH ARBITRARY NUMBER OF

FACTOR MATRICES

In this session, we formulate the KP approximation prob-
lems by minimizing the Frobenius norm of approximation
error. The problem is converted to a tensor product approxi-
mation using the proposed matrix-to-tensor transformation.

A. Tensor product-based formulation for 2 matrices case

In order to provide some insights on how to apply tensor
product to solve the KP approximation problem, we consider
the two factor matrices case as in (4), given the matrix
M ∈ Rp1p2×q1q2 that can be written as the uniform blocking
matrix as in (5). Then we define a third-order tensor M ∈
Rp2×q2×p1q1 by stacking the block matrices Mij ∈ Rp2×q2
along the third dimension. Figure 1 illustrates how to convert
the given block matrix M into a third-order tensor M .

Next, we prove the following theorem that allows us to solve
problem (4) using tensor product approximation.

Theorem 2. The Kronecker approximation problem in (4) is
equivalent to the following tensor approximation problem:

min
S,u3

‖M − S ×3 u3‖F . (19)

Figure 1. Illustration on how to convert a matrix M into third-order tensor
M for the two factor matrices Kronecker product approximation.

where the tensor S ∈ Rp2×q2×1 is the matrix S = A2 and
u3 = vec(A1) ∈ Rp1q1×1.

Proof. Here we aim to prove the theorem by showing that our
method is the same as Van Loan’s approach. actually We start
from the objective function of (19). By (10), we have

‖M − S ×3 u3‖F =
∥∥M(3) − u3S(3)

∥∥
F
. (20)

Note that by the definition of n-mode unfolding in Definition
1, M(3) = R(M) ∈ Rp1q1×p2q2 as defined in (7). Also, S(3) =
vec(S)T . Hence, by letting S = A2 and u3 = vec(A1), we
have:∥∥M(3) − u3S(3)

∥∥
F
=
∥∥R(M)− vec(A1)vec(A2)

T
∥∥
F
.
(21)

By (6) shown by Van Loan in [4], we prove that our formula-
tion is actually the same as Van Loan’s, and is thus equivalent
to problem (4).

As an alternative to Van Loan’s method using matrix SVD
to solve (4), we can apply HOOI by considering the problem
as the best rank-(p2, q2, 1) tensor approximation. We expect
the solution of HOOI to be the same as that Van Loan’s.

Therefore, by solving (19), we can obtain solutions A1 and
A2 of (4) by

A1 = reshape(u3, [p1, q1]), A2 = S; (22)

here reshape(A, [m,n]) is a function that reshapes A into a
m-by-n matrix.

B. Extending to N matrix factor case

In this subsection, we extend our matrix-to-tensor transfor-
mation in previous subsection to solve the KP approximation
for N factor matrices.

Similar to the two matrix case, we first convert
the matrix M into an (N + 1)th-order tensor M ∈
RpN×qN×p1q1×···×pN−1qN−1 as described in Algorithm 2.
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Algorithm 2: Convert matrix M into a tensor M
input : Original matrix M and dimensions of

matrices A1, . . . ,AN p1, q1, . . . , pN , qN
output: Tensor M

1 Convert M to a 3rd-order tensor M1 of
dimension p2 · · · pN × q2 · · · qN × p1q1 by
dividing it into p1 × q1 blocks and stacking the
blocks along the 3rd dimension;

2 Similar to step 1, convert M1 to a 4th-order
tensor M2 of dimension
p3 · · · pN × q3 · · · qN × p1q1 × p2q2 by dividing it
into p2 × q2 blocks and stacking the blocks along
the 4th dimension;

3 Repeat the step (N − 1) times until we get a
tensor M of dimension
pN × qN × p1q1 × · · · × pN−1qN−1;

Then, the minimization problem (1) is equivalent to the
following problem:

min
S,u3,···,uN+1

‖M − S ×3 u3 ×4 u4 × · · · ×N+1 uN+1‖F
(23)

where AN = S and u3, . . . ,uN+1 are vectors that can be
reshaped to A1, . . . ,AN−1, respectively, by the following
formula:

An = reshape (un+2, [pn, qn]) (24)

for n = 1, . . . , N − 1.
Note that the problem (23) is equivalent to solving the best

rank-(pN , qN , 1, . . . , 1) approximation of the tensor M . We
apply the HOOI as shown in Algorithm 1 to solve the problem
(23). Bader et al. from Sandia National Laboratories has kindly
provided a Matlab toolbox for HOOI which is available online
[12].

IV. NUMERICAL EXPERIMENTS

We carried out four numerical experiments to study the
properties of the proposed methods. We implemented our
methods in Matlab and ran the experiments on a personal
computer with quad-core CPU of 2.5GHz. For the HOOI
algorithm, we applied the tensor toolbox developed by the
Sandia National Laboratories [13].

Experiment 1: Two factor matrices in 1,000 trials

In Experiment 1, we compared our solution of problem (1)
with the conventional method proposed by Van Loan et al.
[4]. We first generated 1,000 different random matrices M of
variable size with maximum 100 columns/rows. The entries of
the matrices were chosen uniformly at random between 0 and
1. Then we approximated the matrices by Kronecker product
of two matrices Â1 and Â2 using the two algorithms. We
compared our method using HOOI with that of Van Loan by
computing the mean square difference between the entries of
the resulting Kronecker product approximations M̂ = Â1 ⊗
Â2 by the two algorithms. We found that the average mean

square difference is 1.3878 × 10−17 for each trial, which is
extremely small and potentially due to numerical errors. Note
that although our algorithm is different from Van Loan’s, the
objective functions are identical. We verified empirically that
the two algorithms achieve the same results.

Experiment 2: Three factor matrices case study

In Experiment 2, we illustrated our method using the
following example. Given the matrix:

M =



1 2 3 4 5 6 7 8
2 9 10 11 12 13 14 15
3 10 16 17 18 19 20 21
4 11 17 22 23 24 25 26
5 12 18 23 27 28 29 30
6 13 19 24 28 31 32 33
7 14 20 25 29 32 34 35
8 15 21 26 30 33 35 36


, (25)

we aim to approximate it by KP of three 2-by-2 matrices and
compare the results of using our method with Van Loan’s.
Different approximation methods were compared and results
were presented as follows. For better understanding, the result-
ing KP approximation is expressed as M̂ = σÂ1 ⊗ Â2 ⊗ Â3

where Â1, Â2 and Â3 are normalized by explicitly extracting
the norm σ.

1) Our tensor product method: Directly apply HOOI to
solve (1). We transformed M into a fourth-order tensor
M ∈ R2×2×4×4 by Algorithm 2. Then we solved the
best rank-(2, 2, 1, 1) problem using HOOI.
The resulting KP approximation is

M̂ =161.8575

(
0.2435 0.4142
0.4142 0.7730

)
⊗
(
0.3779 0.4832
0.4832 0.6246

)
⊗
(
0.4394 0.4954
0.4954 0.5622

)
(26)

and
∥∥∥M− M̂

∥∥∥
F
= 35.3576.

2) Van Loan’s method #1: Apply Van Loan’s method to
solve (4) twice. First approximate M by KP of a 2-
by-2 matrix and a 4-by-4 matrix, then approximate the
resulting 4-by-4 matrix by two 2-by-2 matrices. The
resulting KP approximation is

M̂ =161.8573

(
0.2450 0.4144
0.4144 0.7724

)
⊗
(
0.3778 0.4832
0.4832 0.6247

)
⊗
(
0.4394 0.4954
0.4954 0.5622

)
(27)

and
∥∥∥M− M̂

∥∥∥
F
= 35.3584.

3) Van Loan’s method #2: Apply Van Loan’s method to
solve (4) twice. First approximate M by KP of a 4-
by-4 matrix and a 2-by-2 matrix, then approximate the

2016 IEEE International Conference on Systems, Man, and Cybernetics • SMC 2016 | October 9-12, 2016 • Budapest, Hungary

SMC_2016    004280



Method Average Frobenius norm error
Proposed method 11.2207

Van Loan’s 11.2216

Table I
THE AVERAGE FROBENIUS NORM ERRORS OVER ALL 1,000 TRIALS USING

THE TWO METHODS IN EXPERIMENT 3.

resulting 4-by-4 matrix by two 2-by-2 matrices. The
resulting KP approximation is

M̂ =161.8542

(
0.2433 0.4141
0.4141 0.7733

)
⊗
(
0.3779 0.4832
0.4832 0.6247

)
⊗
(
0.4443 0.4956
0.4956 0.5580

)
(28)

and
∥∥∥M− M̂

∥∥∥
F
= 35.3727.

We found that our method obtains the minimal error norm∥∥∥M− M̂
∥∥∥
F

among the three methods. This is reasonable
because using Van Loan’s methods, it cannot guarantee more
than two matrices Kronecker product to minimize the error
norm. The errors of Van Loan’s methods deviate more from
that of our method with more factor matrices. Besides, the
choice of different factorization order for Van Loan’s method
also affect the approximation. Hence, in this case, we verified
that our method can simultaneously solve the three matrices
KP approximation problem (1) which achieves better results
than that of Van Loan’s.

Experiment 3: Three factor matrices in 1,000 trials

In this experiment, we empirically verified the efficacy
of our tensor product approach by approximating different
random matrices using KP of 3 factor matrices for 1,000 trials.
We generated a different random matrix M of variable size
for each trial. The sizes of the factor matrices pn and qn
for n = 1, . . . , 3 were also chosen randomly from integers
between 1 to 5. Thus, the maximum possible number of
columns and rows was 125. The entries of the matrices were
chosen uniformly at random between 0 and 1. In each trial,
we compared the error norm

∥∥∥M− M̂
∥∥∥
F

of the results using
the following two methods:

1) Our tensor product method: Directly apply HOOI to
solve (1).

2) Van Loan’s method: Apply Van Loan’s method to solve
(4) repeatedly, obtaining Ân in the ascending order of
n.

We found that our method achieved the smallest error
among the two methods for all 1,000 trials. The average
Frobenius norm errors over all 1,000 trials using the two
methods were summarized in Table 1.

Experiment 4: Four factor matrices case study

In experiment 4, we studied the KP approximation of a 4
factor matrices with different sizes. Consider the following

24-by-24 matrix:

M = reshape(v, [24, 24]) =


1 25 · · · 553
2 26 · · · 554
...

...
. . .

...
24 48 · · · 576

 , (29)

where column vector v = (1 2 . . . 576)T . We approxi-
mate M by M̂ = σÂ1 ⊗ Â2 ⊗ Â3 ⊗ Â4 where Â1 ∈ R2×3,
Â2 ∈ R2×2, Â3 ∈ R3×2 and Â4 ∈ R3×3 are normalized by
explicitly extracting the norm σ. We applied three different
methods to find the approximation. The results were as shown:

1) Our tensor product method: Directly apply HOOI to
solve (1). We transformed M into a fifth-order tensor
M ∈ R2×2×6×4×6 by Algorithm 2. Then solved the best
rank-(2, 2, 1, 1, 1) problem using HOOI. The resulting
KP approximation is

M̂ =7966.86

(
0.1200 0.3536 0.5872
0.1346 0.3682 0.6018

)

⊗
(
0.4282 0.5557
0.4361 0.5636

)
⊗

0.3794 0.4311
0.3816 0.4333
0.3837 0.4354


⊗
(
0.4833 0.5149
0.4846 0.5162

)
(30)

and
∥∥∥M− M̂

∥∥∥
F
= 629.3953.

2) Van Loan’s method #1: Apply Van Loan’s method to
solve (4) repeatedly, obtaining Ân in the ascending order
of n. The resulting KP approximation is similar to (30),
but the

∥∥∥M− M̂
∥∥∥
F

= 629.3957, which is larger than
that of our method.

3) Van Loan’s method #2: Apply Van Loan’s method to
solve (4) repeatedly, by first factorizing the matrix M
by two smaller matrices, and then applying the method
again for these two smaller matrices to obtain Ân for
n = 1, . . . , 4. The resulting KP approximation is also
similar to (30), but the

∥∥∥M− M̂
∥∥∥
F
= 629.4170, which

is larger than that of our method and Van Loan’s method
#1.

The results revealed that the proposed method achieves the
smallest approximation error comparing with different com-
binations of Van Loan’s method, verifying our claim that our
formulation gives the best Kronecker product approximation
in term of Frobenius norm.

Experiment 5: Four factor matrices in 1,000 trials

This experiment setup is basically the same as Experiment 3,
except we considered 4 factor matrices approximation instead.
We generated a different random matrices M of variable size
for each trial. The sizes of the factor matrices pn and qn
for n = 1, . . . , 4 were also chosen randomly from integers
between 1 to 5. Thus, the maximum possible number of
columns and rows are 625. The entries of the matrices were
chosen uniformly at random between 0 and 1. In each trial, we

2016 IEEE International Conference on Systems, Man, and Cybernetics • SMC 2016 | October 9-12, 2016 • Budapest, Hungary

SMC_2016    004281



Method Average Frobenius norm error
Proposed method 39.0003
Van Loan’s # 1 39.0007
Van Loan’s # 2 39.0005

Table II
THE AVERAGE FROBENIUS NORM ERRORS OVER ALL 1,000 TRIALS USING

THE THREE METHODS IN EXPERIMENT 5.

compared the error norm
∥∥∥M− M̂

∥∥∥
F

of the results using the
three methods as in Experiment 4: our tensor product method,
Van Loan’s methods #1 and #2.

Similar to Experiment 3, we found that our method achieved
the smallest error among the three methods for all 1,000
trials. The average Frobenius norm errors and the total errors
per entry over all 1,000 trials using the three methods are
summarized in Table 2.

V. CONCLUSIONS

In this paper, we solved the Kronecker product approxi-
mation of an arbitrary number of factor matrices. We pro-
posed to use a matrix-to-tensor transformation to convert the
original problem to a best rank-(R1, . . . , RN ) tensor product
approximation problem, where efficient tensor approximation
algorithm such as the higher-order orthogonal iteration can
subsequently be applied. Numerical experiments showed that
the proposed method generally outperform the well-known
Van Loan’s method for approximation of two factor matrices.
Our method can be applied as an analysis tool for a wide range
of applications such as networked systems. In future work, we
will give the detailed proof for the case of more than two factor
matrices. We will also study its applications in different fields,
by incorporating additional application-specific constraints.
We notice that the proposed matrix-to-tensor transformation
algorithm can also be applied to decompose a matrix into sum
of Kronecker products.
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